
AWS Certified Machine Learning
People are viewing this right now
What will be Cover ?
Module 1 – Data Engineering
- Data collection, transformation, and storage Choosing appropriate storage solutions: S3, Redshift, RDS, DynamoDB Data ingestion services: AWS Glue Kinesis Data Pipeline Database Migration Service (DMS) Data preparation and cleansing: Handling missing values Handling outliers Normalization Creating and managing data lakes with AWS Lake Formation
Module 2 – Exploratory Data Analysis
- Analyzing datasets with pandas, NumPy, Jupyter Notebooks Data visualization using: Amazon QuickSight matplotlib seaborn Feature engineering: Feature scaling Encoding Feature selection Feature transformation Detecting: Data imbalance Data bias Data correlation Understanding data distribution & data drift
Module 3 – Modeling
- Selecting the right ML algorithm: Classification Regression Clustering Using Amazon SageMaker for: Model building Built-in algorithms Bring Your Own Model (BYOM) SageMaker Studio Training & tuning: Hyperparameter tuning Distributed training Model evaluation: Confusion matrix Precision/Recall F1 score AUC Model explainability & bias detection with SageMaker Clarify
Module 4 – Machine Learning Implementation & Operations
- Model deployment strategies: Real-time inference Batch transform Edge deployment (SageMaker Edge) CI/CD for ML (MLOps) using: SageMaker Pipelines Model registry Endpoint monitoring Monitoring & debugging ML models: SageMaker Model Monitor CloudWatch Scaling & securing ML endpoints: Auto Scaling IAM policies VPC access
Module 5 – Key AWS Services to Master
- Amazon SageMaker (Studio, Pipelines, Clarify, Model Monitor, Edge) AWS Glue, Kinesis, Data Pipeline S3, Redshift, Athena, Lake Formation CloudWatch, IAM, Lambda, Step Functions Amazon QuickSight
Course Detail
🟪 AWS Certified Machine Learning – Specialty – Course Content
-
Module 1 – Data EngineeringÂ
- Data collection, transformation, and storage
- Choosing appropriate storage solutions: S3, Redshift, RDS, DynamoDB
- Data ingestion services:
- AWS Glue
- Kinesis
- Data Pipeline
- Database Migration Service (DMS)
- Data preparation and cleansing:
- Handling missing values
- Handling outliers
- Normalization
- Creating and managing data lakes with AWS Lake Formation
-
Module 2 – Exploratory Data AnalysisÂ
- Analyzing datasets with pandas, NumPy, Jupyter Notebooks
- Data visualization using:
- Amazon QuickSight
- matplotlib
- seaborn
- Feature engineering:
- Feature scaling
- Encoding
- Feature selection
- Feature transformation
- Detecting:
- Data imbalance
- Data bias
- Data correlation
- Understanding data distribution & data drift
-
Module 3 – ModelingÂ
- Selecting the right ML algorithm:
- Classification
- Regression
- Clustering
- Using Amazon SageMaker for:
- Model building
- Built-in algorithms
- Bring Your Own Model (BYOM)
- SageMaker Studio
- Training & tuning:
- Hyperparameter tuning
- Distributed training
- Model evaluation:
- Confusion matrix
- Precision/Recall
- F1 score
- AUC
- Model explainability & bias detection with SageMaker Clarify
- Selecting the right ML algorithm:
-
Module 4 – Machine Learning Implementation & OperationsÂ
- Model deployment strategies:
- Real-time inference
- Batch transform
- Edge deployment (SageMaker Edge)
- CI/CD for ML (MLOps) using:
- SageMaker Pipelines
- Model registry
- Endpoint monitoring
- Monitoring & debugging ML models:
- SageMaker Model Monitor
- CloudWatch
- Scaling & securing ML endpoints:
- Auto Scaling
- IAM policies
- VPC access
- Model deployment strategies:
-
Module 5 – Key AWS Services to Master
- Amazon SageMaker (Studio, Pipelines, Clarify, Model Monitor, Edge)
- AWS Glue, Kinesis, Data Pipeline
- S3, Redshift, Athena, Lake Formation
- CloudWatch, IAM, Lambda, Step Functions
- Amazon QuickSight

AWS Certified Machine Learning